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Abstract
Most recently, Lee and Chang (2009 J. Phys.: Condens. Matter 21 115302) combined nonlocal
theory and Euler–Bernoulli beam theory in the study of the vibration of the fluid-conveying
double-walled carbon nanotube. In this recent published work, the importance of using nonlocal
stress tensors consistently has been overlooked, and some ensuring relations were still presented
based on the local stress components. Therefore, the governing equations and applied forces
obtained in this manner are either inconsistent or incomplete. In this comment, the consistent
governing equations for modelling free transverse vibration of the fluid-conveying
double-walled carbon nanotube using the nonlocal Euler–Bernoulli beam model are derived.

A mathematical solution to a coupled vibration problem of
fluid-conveying double-walled carbon nanotubes (DWCNTs)
based on nonlocal Euler–Bernoulli beam theory has been
reported recently by Lee and Chang [1], where the governing
equation of DWCNTs for conveying fluid by considering the
effect of van der Waals interaction between the inner and outer
tubes is expressed as

E I1
∂4Y1

∂ X4
+ 2mfv

∂2Y1

∂ t∂ X
+ mfv

2 ∂2Y1

∂ X2

+ ∂2

∂ t2

[
(mc1 + mf)Y1 − mc1(e0a)2 ∂2Y1
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]
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∂ t2

[
mc2Y2 − mc2(e0a)2 ∂2Y2

∂ X2

]

= c[Y1 − Y2]. (1b)

However, in the above equation there are inconsistencies

in the handling of the governing equations and applied forces.
Using the same methodology presented by Tounsi et al [2],
the constitutive relations of nonlocal elasticity theory are
presented for application in the analysis of double-walled
carbon nanotubes conveying fluid when modelled as Euler–
Bernoulli beams.

The governing differential equation of motion for the free
vibration of the fluid-conveying tube can be expressed as [2–4]

∂ Q

∂x
= mc

∂2w

∂ t2
+ Fw − p, (2)

where E I1 and E I2 stand for the bending rigidities of the
inner and outer tubes, Y1(X, t) and Y2(X, t) are the bending
deflections of the inner and outer tubes, mc1 and mc2 are the
per unit length mass of the tubes, and v and mf are the uniform
mean velocity and the per unit length mass of the flow fluid in
the DWCNT, respectively. p(x) is the distributed transverse
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force along axis x . Fw is the force per unit length induced by
the plug flow which is given by [2, 4, 5]

Fw = mf

(
2v

∂2Y

∂ X∂ t
+ v2 ∂2Y

∂ X2
+ ∂2Y

∂ t2

)
, (3)

Q is the resultant shear force on the cross section, which
satisfies the moment equilibrium condition

Q = ∂M

∂ X
, (4)

for the Euler beam, M is the resultant bending moment defined
by

M =
∫

A
yσx dA, (5)

where σx is the nonlocal axial stress of the nonlocal continuum
theory [6].

The one-dimensional nonlocal constitutive relation for the
Euler beam can be written as [2, 6–15]

σx − (e0a)2 ∂2σx

∂ X2
= −Ey

∂2Y

∂ X2
(6)

where E is the Young’s modulus, a is an internal characteristic
length (length of C–C bond), and e0 is a constant for adjusting
the model in matching some reliable results by experiments or
other models.

According to equation (6), the relation (5) thus can be
expressed as

M = (e0a)2 ∂2M

∂ X2
− E I

∂2Y

∂ X2
(7)

where I = ∫
A y2 dA is the moment of inertia.

By substituting equations (2) and (4) into (7), the nonlocal
bending moment M and shear force Q can be obtained as
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and
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The equation of motion (2) thus can be expressed by the
transverse deflection as
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∂2Y
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×
(
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∂4Y
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)
. (10)

It is known that DWCNTs are distinguished from a
traditional elastic beam by their hollow two-layer structures
and associated intertube van der Waals forces. As CNTs
have high thermal conductivity, it may be regarded that the
change of temperature is uniformly distributed in the CNT.
Thus equation (10) can be used to each of the inner and outer
tubes of the double-walled carbon nanotubes. Assuming that

the inner and outer tubes have the same thickness and effective
material constants, we have
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where subscripts 1 and 2 are used to denote the quantities
associated with the inner and outer tubes, respectively, p12

denotes the van der Waals pressure per unit axial length exerted
on the inner tube by the outer tube.

The deflections of two tubes are coupled through the van
der Waals force [16]. The van der Waals interaction potential,
as a function of the interlayer spacing between two adjacent
tubes, can be estimated by the Lennard-Jones model. The
interlayer interaction potential between two adjacent tubes can
be simply approximated by the potential obtained for two
flat graphite monolayers, denoted by g(�), where � is the
interlayer spacing [17, 18]. Since the interlayer spacing is
equal or very close to an initial equilibrium spacing, the initial
van der Waals force is zero for each of the tubes provided
they deform coaxially. Thus, for small-amplitude sound waves,
the van der Waals pressure should be a linear function of the
difference of the deflections of the two adjacent layers at the
point as follows:

p12 = c(Y2 − Y1) (12)

where c is the intertube interaction coefficient per unit length
between two tubes, which can be estimated by [7, 14]

c = 320(2R1) erg cm−2

0.16d2
(d = 0.142 nm) (13)

where R1 is the radius of the inner tube.
Thus, according to equations (3), (11) and (12), the

governing equation of motion for the free vibration of the fluid-
conveying tube using nonlocal elastic theory can be expressed
as
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Equations (8), (9) and (14) are the consistent basic
equations of the nonlocal Euler–Bernoulli beam model applied
for DWCNTs conveying fluid based on the constitutive
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relations (6). When e0a = 0, they are reduced to the
equations of a classical Euler–Bernoulli beam. It is noted
from equation (10) or (14) that the governing equations of
the nonlocal beam models derived based on the relations (6)
include not only the forces Fw and p themselves but also the
term relating their second-order derivatives. It is different from
the governing equations of the classical (local) beam models.
It was overlooked in Lee and Chang [1], in which the forces Fw

and p were not considered in deriving the governing equations
and were simply added to the equations (1) as treated for local
models, but missing the terms concerning the nonlocal effects.
In addition, when mf = 0, the coupled equation (14) can be
reduced to the same equation in [7, 11].
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